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A simple model is proposed which relates elastic and inelastic processes in strong interactions. It is assumed 
that the basic process in strong interactions is meson production. The meson fields are calculated from a 
Klein-Gordon equation using a Gaussian source function. It is assumed that there are three types of strong 
interactions, whose quanta are, respectively, the w meson, the K meson, and the antibaryon. The sizes of the 
three corresponding source functions are inversely proportional to the square roots of the masses of the 
quanta. The three coupling constants are taken to be equal. Elastic scattering is assumed to be the diffraction 
scattering associated with the inelastic meson-producing processes. We thus obtain predictions for three 
phenomena in nucleon-nucleon collisions: the differential elastic-scattering cross section; the differential cross 
section for production of particles; the average number of mesons produced as a function of incident energy. 
The predictions are in good agreement with all experimental data in the multi-GeV region. 

I. INTRODUCTION 

THERE has recently been considerable interest in 
trying to understand something of the nature of 

the strong or nuclear interactions. A simple field theory 
of strong interaction is proposed, which explains several 
phenomena observed in scattering experiments. Elastic 
and inelastic processes are related to each other. 

It is assumed that the meson fields obey an equation 
of the form 

(n+w2)cA-p. (1) 

The quantity p is the source function for meson fields 
which arise whenever two nucleons interact. A func
tional form of p is chosen which leads to results that 
are in agreement with experiment. This source function 
is assumed to have three spatial regions, corresponding 
to three different types of strong interactions. The x 
meson, K meson, and antibaryon are the quanta of 
these three types of interactions. The three regions 
have progressively smaller radii corresponding to the 
increasing masses of the quanta. 

The wave equation is solved employing the well-
known in-out formalism. This leads to the result that 
the probability of producing n mesons is Poisson dis
tributed. The expectation value of n^ which parameter
izes the Poisson distribution, contains the important 
information about scattering cross sections for elastic 
and inelastic processes. In fact we obtain predictions 
for several different phenomena. (1) The elastic dif
ferential cross section for nucleon-nucleon scattering. 
(2) The momentum-distribution function of the mesons 
produced in a high-energy nucleon-nucleon collision, 
(3) The multiplicity or total number of mesons pro
duced as a function of energy. These predictions seem 
to be in rather good agreement with existing experi
mental data in the high-energy region. However, the 
data on inelastic processes are not very extensive and 
the validity of this model can only be tested by more 
experiments on inelastic processes at high energy. 
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II. ELASTIC SCATTERING 

There has recently been considerable interest in 
finding a simple explanation for the differential elastic-
scattering cross sections that have been observed in 
strong interactions. It will be shown that all high-energy 
proton-proton elastic-scattering data can be explained 
in terms of the simple absorbing model proposed in an 
earlier paper. ̂  It is especially interesting that the size 
of the absorbing region is rather energy-independent. 
This can be most easily seen by plotting X versus r as 
was suggested.^'2 This is done in^ Fig. 1 where there is 
little energy dependence. 

The normalized differential scattering cross section 

X^{da/d^,,^){^Tr/kij,oty (2) 

has been plotted against the variable •~ ,̂̂  in the hope 
that this would result in an energy-independent curve— 
that is, one in which the diffraction peak does not 
shrink. There is in fact no reason why this should be so. 
An interaction region whose size is independent of 
energy does not necessarily result in an X plot which is 
independent of energy. As shown by Cocconi et alJ 
such plots have considerable energy dependence. A 
pure optical model encourages the hope that such a 
plot might be energy-independent. However, the pure 
optical model which worked so well for lower energy 
nucleon-nucleus scattering can not be expected to work 
in detail in the multi-GeV region, although it does 
successfully predict trends.^ 

" 1 A. D. Krisch, Phys. Rev. Letters 11, 217 (1963). 
2 It was independently pointed out that the transverse momen

tum may be a relevant variable in proton proton elastic scattering 
by D. S. Narayan and K. V. L. Sarma, Phys. Letters 5, 365 
(1963). 

^ G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R. Rubin
stein et al, Phys. Rev. Letters 11, 499 (1963); W. F. Baker, E. W. 
Jenkins, A. L. Read, G. Cocconi et al, ibid. 12, 132 (1964), A. N. 
biddens, E. Lillethun, G. Manning, A. E. Taylor, T. G. Walker, 
and A. M. Wetherell, Proceedings of the 1962 International Con
ference on High-Energy Physics at CERN, edited by J. Prentki 
(CERN Scientific Information Service, Geneva, 1963), p. 576. 
W. F. Baker, E. W. Jenkins, A. L. Read, G. Cocconi, V. T. 
Cocconi, and J. Orear, Phys. Rev. Letters 9, 221 (1962). K. J. 
Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. Russell, and 
L. C. L. Yuan, ibU, 10, 376 (1963); 11, 425 (1963). 

4R. Serber, Phys. Rev. Letters 10, 357 (1963). 
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Thus, one is justified in studying functions of r whidi 
are slightly different from X, It was found that by 
plotting the function 

F-Xe-4 8iu25_ (da/dQ,,^,){^T/katotYe-' ''^'' (3) 

against T=_^^sin^^ essentially all the shrinkage was 
removed. This is shown in Fig. 2 where all experi
mental data^'^ from 2.3 to 30 GeV have been plotted. 
The curve 

jr__ g--9.40r_|_ I^Q-2.69^-2.925r_|_ j^Q-5.90^-1.303r r^\ 

is also plotted. Thus, all proton-proton elastic scattering 
in the high-energy region can be fit by the simple sum 
of three exponentials in r, the transverse momentum 
squared. 

Jfic 

/^CTtotV 

. \ 47r / 

^4-4 sinagr^—9.40T I J[Q~-2.69^~2.925T 

_j_^Q_5.90g„1.303r-]^ (5) 

It should be emphasized that no special significance is 
given to the term e~^ ^̂ ^̂ .̂ It is merely a computational 
device used to get all experimental data on one line. 

One can obtain a useful picture of the interaction by 
projecting out the partial-wave amplitudes from Eq. (4) 

o Cem 
o Corneli-BNL 
• This Exp. 

I 2 3 4 5 6 ^ 7 8 9 10 N 12 13 

r«p^sirra{G€iv/c)2 
FIG. 1. The normalized differential scattering cross section 

X= {d(T/dQ{4:7r/katoty is plotted against the transverse momentum 
squared r = ^^ gin^ .̂ All proton-proton elastic-scattering data 
above 10 GeV is shown. Some values of incident laboratory mo
menta are given. 

according to the relation 
L k r^ 

^ - " d 
2 j _ i 

(6) 

FIG. 2. The unconventionally 
normalized differential scattering 
cross section F=e~^ ^''""^^{da/dSX) 
X {^Tr/katot)^ is plotted against the 
transverse momentum squared r 
~p'^sui?d. All proton-proton elas
tic-scattering data above 2.3 GeV 
are shown (Refs. 3, 5). Some values 
of the incident laboratory mo
menta are given. Equation (4) is 
also plotted. 

Id"' 

10̂ '̂ 

ICJ' 

-14 
10 ' 

• Cornell BNL 
A Cornell BNL(I962) 
a Cem 
o Bevatron 

13.11̂ 17̂  
\ | 2 I . 5 

l8.2»N,j25.0 

ISJO'^VJEO.S 

l9J6^ff2B.7 

21.9^"^ 2U9 

26.6 
:6.2 

J U . 
3 4 5 6 7 8 9 10 II 12 

T « P ^ sln^al^GeV/c)^ 

31^3.09 

13 14 

5 B. Cork, W. A. Wenzel, and C. W. Causey, Phys. Rev. 107, 859 (1957). 
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14 I6(p2»3.25) 

FIG. 3. The partial-wave amplitudes, l~bi are plotted against 
the "spatially" scaled values of the angular momentum, for 
center-of-mass momenta squared of p^=13 (GeV/c)^ and p^ = S.25 
(GeV/c)2. 

where bi~e~^^ is the transmission coefficient and Xi 
is twice the imaginary part of the phase shift. The 
integrals involved are not elementar}/- but they are 
similar to the lah^ encountered previously^ [in Eq. (11)], 
and can be done by computer. The projection is done 
for two different energies: pc = 13 (GeV/cy corre
sponding to />iab = 29 GeV/c and ^c.m.^=3.25 GeV/c^ 
corresponding to ^iab=7.3 GeV/c. Both results are 
plotted in Fig. 3 on a scale in which the association 
R=l/k has been made. Thus, each angular momentum 
is scaled down by the center-of-mass momentum so 
that we have equivalent "spatial" distributions. I t is 
very striking that the resulting distribution is rather 
energy-independent. 

Xij which is twice the imaginary part of the phase 
shift is tabulated in Table I and plotted in Fig. 4, where 
the same scaling procedure has been employed as in 
Fig. 3. Xi has been interpreted^ as the perpendicular 
interaction probability density. This is also seen to be 
rather independent of energy. In fact, the width of the 
distribution changes by less than 10% when pc.m.^ 
changes from 13 to 3.25 (GeV/c)^. 

III. MESON FIELD EQUATION 

The above diffraction phenomenon can be explained 
in terms of a simple model for strong interactions. 
Assume that the basic process in strong interactions is 
meson production. This is analogous to the fact that 

TABLE I. l~bi, the partial-wave amplitude and x ,̂ which is 
twice the imaginary part of the phase shift, are tabulated for even 
integer angular momenta. 

2̂:== 13 (GeVA)2 
l-bi Xi 

p^ = 3.2S (GeVA)2 
1-bi Xi 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 

0.957 
0.920 
0.856 
0.760 
0.659 
0.558 
0.456 
0.364 
0.281 
0.211 
0.153 
0.107 
0.072 
0.046 
0.029 
0.017 
0.010 
0.006 

3.14 
2.52 
1.94 
1.43 
1.075 
0.816 
0.609 
0.452 
0.330 
0.237 
0.166 
0.113 
0.075 
0.047 
0.030 
0.017 
0.010 
0.006 

1.191 
0.932 
0.668 
0.436 
0.250 
0.123 
0.052 
0.019 
0.007 
0.003 

2.69 
1.10 
0.573 
0.288 
0.131 
0.053 
0.019 
0.007 
0.003 

photon production is the basic process of electromag
netic interactions. Then the strong elastic scattering 
can be understood as the diffraction scattering associ
ated with these ^^inelastic" meson-production processes. 
Information about the nature of meson production can 
be obtained from the differential elastic-scattering 
cross section.^ 

We postulate that the meson can be described by a 
field (j>{r). The field is assumed to obey a relativistic 

3.25(GeV/c)'' 

4 
2 

8.5r '2 
4 6 

16 LOF̂ O 
8 10 

24 
12 

jftwO •• ,». 
28 
14 

32"(P2^I3) 
16 (p2=3.25) 

FIG. 4. Xh which is twice the imaginary part of the phase shift, 
or the perpendicular interaction probability density is plotted 
against the "spatiallj^" scaled values of the angular momentum 
for 2̂ = 13 (GeVA)2 and p'^-^Z.lS {GeM/c)\ 

® This idea is certainly not new. An interesting phenomenological 
discussion of the relation between elastic and inelastic scattering 
has recently been given by Van Hove. L. Van Hove, Nuovo 
Cimento 28, 798 (1963); Cargese Summer School, Corsica, 1963 
(unpublished); CERN report 7963/TH. 392 (unpublished). 
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equation of the familiar form.^ 

( D + ^ 2 ) 0 ( r ) - p . (7) 

The quantity p is the source function for the production 
of real mesons. I t arises whenever two nucleons pass 
near each other. Thus p will depend on the distance be
tween the two interacting nucleons, which we denote 
by R= (R , r ) . I t will also depend on the coordinate of 
the meson field with respect to the center of the source. 
The source is centered midway between the nucleons. 
This meson variable is denoted by r = (r,/). For sim
plicity it is assumed that p is independent of all energies 
involved. Thus we have 

p^p(r,R)^gp(r,R). (8) 

The quantity g is the coupling constant of the strong 
interaction and p is normalized so that 

pdMi^R=-^ finite. (9) 

All detailed information about the nature of strong 
interactions will then be contained in the functional 
dependence of p on f and R. At present, there is cer
tainly no theory which gives information about the 
nature of the source function. Thus, the best approach 
seems to be to return to experiment and look for con
straints on the form of p. The most important con
straint comes from the well-known fact that the nuclear 
interaction is short range. This implies that p must fall 
off rapidly as a function of i?, the internucleon distance. 
Due to the fact that at high energies the Lorentz con
traction squashes everything down in the direction of 
the motion, it seems reasonable that in the parallel {Z) 
direction the dependence of p can be well represented 
by a 6 function. I t also seems reasonable to assmne that 
p has a 5-function dependence on time. The actual inter
action time is less than 10"^^ sec. Other clues are con
tained in the fact that the differential elastic cross sec
tion and the differential meson-production cross sec
tions seem to drop off as exponentials or Gaussians in 
the transverse momentum, pi=psmd. All this evidence 
seems to point towards a source function which is a 
double Gaussian in the perpendicular direction. 

P M ) -
(Tra^) 1/2 

e-'^^^'i'>'+^i'^i^^'8(Z)d(z)d(l). (10) 

Of course, the validity of the above formula can only 
be tested in terms of the accuracy of the resulting pre
dictions which will be developed in the following sec
tions. The dependence on the meson field variable r 
cannot presently be too well tested because of a lack 
of good data on inelastic processes. Thus, it is possible 
that new data will indicate that some function other 

^ This is just the Klein-Gordan equation with a source. It has 
been used by many people. 

than the Gaussian is more reasonable. The Gaussian 
was chosen to obtain symmetry with respect to the 
internucleon variable R. 

IV. SOLUTION OF WAVE EQUATION 

The solution of Eq. (7) can be very nicely given in 
terms of the in-out formalism. The usefulness of this 
approach was first pointed out by Lewis, Oppenheimer, 
and Wouthuysen,^ and has been pursued by others.^ 
The situation is nicely reviewed in the book by Henley 
and Thirring^^ whose notation we will adopt. The meson 
wave function is given by 

^out^^in_|_ / dVp(/)A{/-~r). (11) 

The A function is the dift^erence of the retarded and 
advanced A functions, and can be written exactly 

A(r,/)^A^-«*(r,0~A^^^(r,0 
-S/,(^^^'^sinco//co), -«D</<<x) . (12) 

Thus we have that 

•-<^^^- / JVS 
/k - ( r~r ' ) sina;(/--/Op(r^/0 

e'^-'Pk _ e-^^-'Ph^ 

2icx) 
+Sk' 

2ia 
(13) 

The quantity pk is the Fourier transform of the source 
function p(r^R). I t is given by 

,= dVp(r\R)e"'^'-'', (14) 

It is now useful to give a Fourier expansion of < '̂" and 
1̂ °"* in terms of the in and out creation and annihilation 
operators. These are Ak, A^^, Bk and 5^'''. Thus we have 

[2co(27r)']"'^ 

Ake'^-' 
(15) 

[_2co(2iryj' 
•+H.C. 

Putting these results into Eq. (13) we obtain the 
Fourier expansion of the solution 

S/r 
B,e^^'^ 

[2co(27r)= ]̂ 1/2 
+H.C 

-- S, —+H.C. - S , — 
l2cD(2Tyj''' 2io)(2Try 

f-H.c. (16) 

^ H. W. Lewis, J. R. Oppenheimer, and S. Wouthuysen, Phys. 
Rev. 73, 127 (1948). 

9E. M. Henley and.T. D. Lee, Phys. Rev. 101, 1336 (1955), 
Z. Koba and G, Takeda, Progr. Theoret, Phys. (Kyoto) 19, 269 
(1958). 

^̂  E. M. Henley and W. Tliirring, Elementary Quantum Field 
Theory (McGraw-Hill Book Company, Inc., New York, 1962), 
Chap. 8̂  9j 10, 
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Thus, we have that the in and out annihilation opera
tors are related by the simple equation 

B,^A,+ip,/Z2o>i27ryj"- (17) 

Now consider the state consisting of the two incoming 
nucleons and no real mesons with momentum k. This 
we denote by | in, nk=0}. We can get a matrix equation 
for I in, nk = 0) by considering Bk\in, nk = 0) and noting 
that -4 A; I in, nk=0}=0. We then have that 

Integrating over the nucleon-nucleon coordinate parallel 
to the initial motion (Z) we get the dependence of pk 
on Ri and ki, 

PkiRxA) == ga7rl/2^-^^^/2a2^-^x2a2/8^ (24) 

Then the expectation value for the number of mesons 
produced in a state characterized by i^j., ki, and kz is 
given by 

nk(Ri,ki,kz)=' 
\Pk\ 

Bk\in, ^./c=-0) = -
tpk 

- | i n , n , - 0 ) . (18) 
2co(2x) ' \47r/ (J 

.e~Bi}la'^e-^i}a^iK (25) 

[2co(27r)s]i/2' 

Then we are in a position to evaluate the probability 
of producing n mesons with momentum k. This proba
bility is given by 

= |(out, ^fcjin, f̂c===0)|2 

- 1 (out, ^;o=01 (jB,'^V(^i^ 0'^') I in, ^A,=0) i 2 

We can remove the dependence on kz, the momentum 
parallel to the incident motion by integrating over this 
variable 

dkz 

{out, fik^O 
r ipk 

L[2co(27r)s]^'^ 

nh \ 

\in,nk^O} 
{nkir' 

— | ( o u t , « , = 0 | in .«*=0) |2 . (19) 

n(Ri,ki)= / dkzfiiRxyKkz) 
J —p 

\47r/ 

-p (k/+h'+m'yf^ 

nkL2cc(2iry 

Now it can be shown that the normalization is such that 

I (out, nk=0\in,nk=^0)\^= ^"^^. (20) 

The quantity fik is the average number of mesons 
given by 

nk^\pk\'/2co(27ry. (21) 

Thus the probability of producing nk mesons in a state 
k is Poisson distributed according to 

P(nk)= (l/nk\)nk''^e~^''^ (22) 

This Poisson distribution is parameterized by flk which 
is the expectation value of the number of mesons. For a 
more detailed discussion of the above seen Henley 
and Thirring.^^ 

We can now find the average probability densities 
for various processes by finding pk, the Fourier trans
form of the source function and putting it into the 
above equation for n/̂ . Using the double Gaussian 
source function proposed in Sec. I l l we have 

(26) 
This expression is exact but unwieldy. In the high-
energy limit p^m, p^ki, it can be approximated by 
the expression 

n{R,,h,p)=^{—]e-^^'i-'e-^^'-'i^\n . (27) 
\47r/ h^+m^ 

I t is seen that this density has a logarithmic dependence 
on p^, the center-of-mass momentum of the incident 
nucleons. 

A very interesting quantity which can now be com
puted is the average number of mesons with transverse 
momentum ki that are produced when two nucleons 
colHde with momentum p. This is obtained by inte
grating n(Riykijp) over the variable Ri 

n{Kp)- I d'Rin(Ri,Kp) 

/ga\^ 4^2 ĉo 
- (— ) e-^i'^'i' In 27r / e~^i'^^'RidR, 

\47r/ h^+m^ Jo 
g V 4^2 

167r ki^+m^ 
(28) 

Pk^ I d'^rp(r,R)e~'^^' 

2g 
.e-Ri'/^^'8(Z) / d'r 

{Tra?yi^ 

-e-V/^a^a(Z)[4ira2^-'^i^-'/8][l], 
(7ra2)i/2 

(23) 

We can also compute the average number of mesons 
produced at an impact parameter Ri, This function 
determines the nature of the elastic diffraction scattering. 

n(R,,p)^ f(Pk,n(Pi,Kp) 

/ga\^ r f" 

e-'h'<^'/^kjk,\n(h^-j-m') . (29) 
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The first integral can be easily solved. 

/ ' 
J 0 

2 2 
(30) 

However, the second integral can be solved only in 
terms of an infinite series. Fortunately it will be essen
tially independent of p and thus can be written as a 
constant. Thus we have 

n{R,,p) = (gV47r)e-^J-'/'^tln4i^'- Inc]. (31) 

Now we can interpret this constant in terms of the 
threshold energy for meson production by simply re
quiring that n(Ri,po)=--0. Then we have 

liRiS-- (gV47r)e--̂ ^̂ /«̂  ln:^V^o^ (32) 

Finally we can obtain an expression for the multi
plicity or the total number of mesons produced in a 
nucleon-nucleon collision with momentum p. 

nip)= . <PRiniR„p) 

„2 A 2 j--

iir po^ Jo 
R.dRie-'^'.'"'' (33) 

(hgay\n(f/Po'). 

To obtain useful experimental predictions we employ 
the fact that for nucleon-nucleon collisions 2p^=MT, 
The quantity T is the laboratory kinetic energy. Thus 
we have that 

pyp,^T/T,. (34) 

We then obtain the following density functions for the 
average number of mesons produced 

niT)^{hgo)Hn{T/T,), (35) 

n{R,,T) - (^V4x) ln(r/ro)^"^^^/^^, (36) 

n{k,,T) - (gV/16x) ln[21f r/()^x'+w2)]e"^^'«'/^ (37) 

V. RESULTS 

We now postulate that there are three types of strong 
interactions These may be characterized by their 
quanta, which are, respectively, the IT meson, the K 
meson, and the antibaryon. The last two are char
acterized by the fact that they carry two important 
quantum numbers, strangeness and baryon number. 
The coupling constant g is assumed to be the same for 
all three of these interactions and all three are assumed 
to have double Gaussian source functions of the type 
given in Eq. (10). However, the radius of the source 
function ai is assumed to depend on the mass of the 
quantum. In fact, it is assumed that 

ai^J/fTH^ (38) 

where nii is the mass of the quantum. To give the best 

TABLE II. 

Meson 

TT 

K n 

The various parameters that can be calculated 
for the three ty^t^ of interactions. 

Mass 
GeV 

0.140 
0.495 
0.938 

Interaction 
radius a 

F 

0.82 
0.44 
0.32 

Slope in 
r plot a 
GeVA-2 

8.73 
2.47 
1.30 

Threshold 
energy To 

GeV 

0.29 
1.75 
5.64 

fit to existing experimental data, / is taken to be 
0.0945 GeV-F .̂ The validity of this approach can be 
best seen by considering the quantity a = a?/2{ficy, 
This is the slope in a plot of differential cross section 
versus r. See Fig. 1. This slope is related to the spatial 
size of the interaction region by taking the Fourier trans
formation of the Gaussian in pi—^/r.Wt then calculate 
and tabulate the relevant quantities in Table II. The 
resulting slopes and interaction radii are in fairly good 
agreement with the experimental results for elastic 
proton-proton scattering. We have included in Table II 
a list of the threshold energies for the production of each 
meson in nucleon-nucleon collisions. 

Finally we choose as our coupling constant ĝ  = 5.6 F"^ 
for all three types of interactions. This is chosen to 
agree with some experimental results which will be 
described below. Thus we have only two arbitrary 
parameters in our theory, the coupling constant g and 
the interaction size parameter / . 

We will now show how the expectation valve density 
n(Ri,T) is related to the elastic-scattering cross section. 
It has been shown in Sec. IV that the number of mesons 

I 1.5 2 2J5 

R^ (fermis^) 

J'iG. 5. hogXi, which is twice the imaginary part of the phase 
shift is plotted against Ri^ in F^ for incident laboratory momenta 
of 29 GeV and 7.25 GeV. The theoretical curves are calculated 
from Eq. (45). The points are the experimental values from elastic 
scattering given in Table I. 
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10 100 1000 10000 

T [GeV] 

FIG. 6. The multiplicity of meson production in nucleon-
nucleon collisions is plotted as a function of laboratory kinetic 
energy. Experimental points (Ref. 11) for x-meson production are 
plotted. Theoretical curves for TT, K, and N production are calcu
lated from Eq. (46). 

produced is Poisson distributed. Thus the probability 
of producing no TT mesons is 

P.(0) = 6-̂ -̂ -̂t'̂ ^ ,T) (39) 

Similarly the probabilities of producing no K^s and iV ŝ 
are given by 

P^(0)=:e--ii:(^X,7^)^ (40) 

Thus the probability of producing no mesons at al] is 
given by the product of the three probabilities. 

Pxi.iv(0) = P.(0)PK(0)PF(0) 

^txY^~ln^{R,,T)+nK{R,;r)+7iH{Ri,T)^. 
(41) 

The probability of producing one or more particles of 
any type is simply one minus the probability of pro
ducing no mesons 

P(any number of particles) == 1 — PTCKN{^) 

But this is just the probability of having an inelastic 
interaction at impact parameter Ri, Now recall that 
the partial-waves expansion for the inelastic cross 
section is 

^ / N = ( 7 r / F ) E ( 2 / + l ) ( l - ~2Xi ) . (43) 

The quantity 1- is also the probability of having 
an inelastic interaction at Ri. Thus we have a simple 
relation between the imaginary part of the phase shift 
and the expectation value densities. 

Xi^uR--=Kn.{R.a')+nK{R.,T)-{-nN{Ri,m. (44) 

This is the Xi which was calculated from the elastic-
scattering experiments in Sec. I I . These results are 
plotted in Fig. 5 on semilog paper to display the 
Gaussian nature of X?. A good lit is obtained using our 
choice of g^==5.6F"~2 for all three types of inter
actions. However, it is possible that a slightly better 
fit could be obtained by choosing different coupling 
constants for the K and N interactions. Using g2 = 5.6, 
we obtain from Eq. (36) 

Xẑ ;fc/ei = 0.50[log(r/0.29)e-(^x/o.82)2 

+log(r/1.75)e-(^^/o-44)' 

+log(r/5.64)^-(^-L/o-32)']. (45) 

This curve is also plotted in Fig. 5 for 2" = 2 9 GeV and 
T==7.25 GeV. The agreement is rather good for T=29 
GeV. For r = 7.25 GeV, things begin to break down near 
the center. There are two reasons why this might be so: 
(1) 7.25 GeV is near threshold for antiparticle produc
tion. (2) For 7.25 GeV, the classical approximation in
volved in setting l=kRi is poor near the center. This is 
because the wavelength corresponding to a particle of 
this energy is no longer small with respect to Ri. 

Using the same coupling constant we can now predict 
the multiplicity of the particles produced in nucleon 
nucleon collisions from Eq. (35). We have 

n . ( r ) = 2.141og(r/0.29), 

nK(r) = 0.621og(r/1.75), 

n i^ ( r ) - : 0.32 log(r/5.64). 

(46) 

These curves are plotted on semilog paper in Fig. 6. 
The experimental results^^ for 7r-meson multiplicity are 
also plotted. These include cosmic-ray results up to 
3500 GeV. The fit is rather good. There are few experi
mental results on strange particle and antiparticle 
production. However, Eq. (46) is consistent with what 
results there are.^^ Observing high-energy protons inter
acting in a hydrogen bubble chamber would be a 
powerful test of this theory. 

There are also predictions about the momentum 
distributions of the secondaries produced. These can be 
obtained from Eq. (37) by putting in appropriate 

" E. Pickup, D. K. Robinson, and E. O. Salant, Phys. Rev. 125, 
2091 (1962); N. A. Dobrotin and S. A. Slavatinsky, Proceedings 
of the 1960 International Conference on High Energy Physics at 
Rochester (Interscience Publishers, Inc., New York, 1960), p. 819; 
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Dalkhazhav, Tao Tsyng Se et al, Nucl. Phys. 14, 522 (1960); 
L. F, Hansen and W. B. Fretter, Phys. Rev. 118, 812 (1960); 
E. Lohrmann, M. W. Teucher, and M. Schein, ihid, 122, 672 
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23p 2 , (47) 

/ i . 88 r \ 
?^iv(/?x,r)^ 0.065 log )£̂ -o-65?̂ x\ 

\p?-\- (0.938)V 

There have been few experiments which can be used to 
directly test these predictions. However, they do seem. 
to be in vague agreement with the beam survey data.̂ *^ 
Cocconi^^ has previously pointed out that these data 
could be fit by an exponential in px. while we propose a 
Gaussian in pi. I t should be noted that the exact va
lidity of these predictions is to some extent inde
pendent of the rest of the theory. For this directly in
volves the dependence of the source function p {R/) 
on the meson field variable, r. This dependence could 
be modified without changing the rest of the theory. 
Nevertheless the present simple double Gaussian is not 
inconsistent with existing experiments. There is no 
reason to make it more complex unless more accurate 
experiments show that it is not correct in detail. 

The inelastic differential cross section for the pro
duction of charged particles in p-p collisions at 19.0 
GeV was recently measured at CERN.^^ We have used 
these experimental results to calculate the total number 
of particles produced by using the equations 

7r = f (TT^+TT ), 

^=2(X++Z~), (48) 

Thus, the uncharged particles are included. The resulting 
data points are plotted in Fig. 7. We also plot Eq. 

13 W. F. Baker, R. L. Cool, E. W. Jenkins, T. F. Kycia, S. J. 
Linenbaum et al.^ Phys. Rev. Letters 7, 101 (1961). 

1̂  G. Cocconi, L. J. Koester, and D. H. Perkins, High Energy 
Physics Study Seminars No. 28 (2), UCID-1444, 1961 (un
published). 

1̂  A. N. Diddens, W. Galbraith, E. Lillenthun, G. Manning, 
A. G. Parham et aL, Nuovo Cimento 31, 962 (1964). 
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FIG. 7. Cross section for the production of TT, K and N in 19.0 
GeV/c p-p collisions. Equation (47) is also plotted. 

(47) using the following normalization 

dpdO. 
==(riNELn(pi,T) = 18.5 mb n(Px,T). (49) 

The valve of CFINEL= 18-5 mb is not equal to the experi
mental value of o-iNEL~^0 mb. Nevertheless, the agree
ment for TT and K is quite good. Note that the N data 
points are below the theoretical curve. This is probably 
because the strange antibaryons were not observed in 
this experiment. 
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